151 research outputs found

    Numerical Prediction of Ripple Dimensions and Related Roughness for Tidal Environments

    Get PDF
    Source: ICHE Conference Archive - https://mdi-de.baw.de/icheArchiv

    Commissioning of the vacuum system of the KATRIN Main Spectrometer

    Get PDF
    The KATRIN experiment will probe the neutrino mass by measuring the beta-electron energy spectrum near the endpoint of tritium beta-decay. An integral energy analysis will be performed by an electro-static spectrometer (Main Spectrometer), an ultra-high vacuum vessel with a length of 23.2 m, a volume of 1240 m^3, and a complex inner electrode system with about 120000 individual parts. The strong magnetic field that guides the beta-electrons is provided by super-conducting solenoids at both ends of the spectrometer. Its influence on turbo-molecular pumps and vacuum gauges had to be considered. A system consisting of 6 turbo-molecular pumps and 3 km of non-evaporable getter strips has been deployed and was tested during the commissioning of the spectrometer. In this paper the configuration, the commissioning with bake-out at 300{\deg}C, and the performance of this system are presented in detail. The vacuum system has to maintain a pressure in the 10^{-11} mbar range. It is demonstrated that the performance of the system is already close to these stringent functional requirements for the KATRIN experiment, which will start at the end of 2016.Comment: submitted for publication in JINST, 39 pages, 15 figure

    Structural and compositional variations of basic Cu(II) chlorides in the herbertsmithite and gillardite structure field.

    Get PDF
    © 2017 The Mineralogical Society. This document is the author’s final accepted version of the journal article. You are advised to consult the published version if you wish to cite from it

    MultiRTA: A simple yet reliable method for predicting peptide binding affinities for multiple class II MHC allotypes

    Get PDF
    abstract: Background The binding of peptide fragments of antigens to class II MHC is a crucial step in initiating a helper T cell immune response. The identification of such peptide epitopes has potential applications in vaccine design and in better understanding autoimmune diseases and allergies. However, comprehensive experimental determination of peptide-MHC binding affinities is infeasible due to MHC diversity and the large number of possible peptide sequences. Computational methods trained on the limited experimental binding data can address this challenge. We present the MultiRTA method, an extension of our previous single-type RTA prediction method, which allows the prediction of peptide binding affinities for multiple MHC allotypes not used to train the model. Thus predictions can be made for many MHC allotypes for which experimental binding data is unavailable. Results We fit MultiRTA models for both HLA-DR and HLA-DP using large experimental binding data sets. The performance in predicting binding affinities for novel MHC allotypes, not in the training set, was tested in two different ways. First, we performed leave-one-allele-out cross-validation, in which predictions are made for one allotype using a model fit to binding data for the remaining MHC allotypes. Comparison of the HLA-DR results with those of two other prediction methods applied to the same data sets showed that MultiRTA achieved performance comparable to NetMHCIIpan and better than the earlier TEPITOPE method. We also directly tested model transferability by making leave-one-allele-out predictions for additional experimentally characterized sets of overlapping peptide epitopes binding to multiple MHC allotypes. In addition, we determined the applicability of prediction methods like MultiRTA to other MHC allotypes by examining the degree of MHC variation accounted for in the training set. An examination of predictions for the promiscuous binding CLIP peptide revealed variations in binding affinity among alleles as well as potentially distinct binding registers for HLA-DR and HLA-DP. Finally, we analyzed the optimal MultiRTA parameters to discover the most important peptide residues for promiscuous and allele-specific binding to HLA-DR and HLA-DP allotypes. Conclusions The MultiRTA method yields competitive performance but with a significantly simpler and physically interpretable model compared with previous prediction methods. A MultiRTA prediction webserver is available at http://bordnerlab.org/MultiRTA.The electronic version of this article is the complete one and can be found online at: http://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-11-48

    Order/disorder phase transition in cordierite and its possible relationship to the development of symplectite reaction textures in granulites

    Get PDF
    Based on a consistent set of empirical interatomic potentials, static structure energy calculations of various Al/Si configurations in the supercell of Mg-cordierite and Monte Carlo simulations the phase transition between the orthorhombic and hexagonal modifications of cordierite (Crd) is predicted at 1623 K. The temperature dependences of the enthalpy, entropy, and free energy of the Al/Si disorder were calculated using the method of thermodynamic integration. The simulations suggest that the commonly observed crystallization of cordierite in the disordered hexagonal form could be related to a tendency of Al to occupy T1 site, which is driven by local charge balance. The increase in the Al fraction in the T1 site over the ratio of 2/3(T1): 1/3(T2), that characterizes the ordered state, precludes formation of the domains of the orthorhombic phase. This intrinsic tendency to the crystallization of the metastable hexagonal phase could have significantly postponed the formation of the association of orthorhombic cordierite and orthopyroxene over the association of quartz and garnet in metapelites subjected to granulite facies metamorphism. The textures of local metasomatic replacement (the formation of Crd + Opx or Spr + Crd symplectites between the grains of garnet and quartz) indicate the thermodynamic instability of the association of Qtz + Grt at the moment of the metasomatic reaction. This instability could have been caused by the difficulty of equilibrium nucleation of orthorhombic cordierite

    Precision measurement of the electron energy-loss function in tritium and deuterium gas for the KATRIN experiment

    Get PDF
    The KATRIN experiment is designed for a direct and model-independent determination of the effective electron anti-neutrino mass via a high-precision measurement of the tritium β\beta-decay endpoint region with a sensitivity on mνm_\nu of 0.2\,eV/c2^2 (90% CL). For this purpose, the β\beta-electrons from a high-luminosity windowless gaseous tritium source traversing an electrostatic retarding spectrometer are counted to obtain an integral spectrum around the endpoint energy of 18.6\,keV. A dominant systematic effect of the response of the experimental setup is the energy loss of β\beta-electrons from elastic and inelastic scattering off tritium molecules within the source. We determined the \linebreak energy-loss function in-situ with a pulsed angular-selective and monoenergetic photoelectron source at various tritium-source densities. The data was recorded in integral and differential modes; the latter was achieved by using a novel time-of-flight technique. We developed a semi-empirical parametrization for the energy-loss function for the scattering of 18.6-keV electrons from hydrogen isotopologs. This model was fit to measurement data with a 95% T2_2 gas mixture at 30\,K, as used in the first KATRIN neutrino mass analyses, as well as a D2_2 gas mixture of 96% purity used in KATRIN commissioning runs. The achieved precision on the energy-loss function has abated the corresponding uncertainty of σ(mν2)<102eV2\sigma(m_\nu^2)<10^{-2}\,\mathrm{eV}^2 [arXiv:2101.05253] in the KATRIN neutrino-mass measurement to a subdominant level.Comment: 12 figures, 18 pages; to be submitted to EPJ
    corecore